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The tran it time measurements of sound wave \7elocities in a solid as a ftlnction of pressure 
contain all the possible information about the mechanical changes brought about in the 
solid due to the application of pressure. The present work gives a procedlue to estimate 
accurately the values of the elastic constants of a solid from the transit t ime measurements 
as a function of pressure without a priori knowledge of the compressibility of t he solid. 
\Vhen the transit time measurements are made as a function of pressure at more than two 
temperatures the procedme developed here also gives estimates for (i) the pressure derivative 
of the thermal expansion coefficient, (ii) the temperature derivative of the thermal expan
. iOIl coefficient, and (iii) the pressme derivative of the specific heat, all as a function of 
pressure. 

Messungen del' Durchgangszeiten von Schall wellen in einem Festkiirper als Funktion des 
Druckes enthalten alle miiglichen Informationen fiber mechanische Veranderllngen, die 
durch Anwendung von Druck im Festkiirper bewirkt werden. Die vorliegende Arbeit gibt 
ein Verfalu'en an, um die 'Yertc del' elastischen Konstanten cines Fcstkiirpers aus Messnn
gen del' DlIfchgangszeiten als Funktion des Drllckes ohne a-priori-Kenntnisse del' Kompres
sibi lit iit genau abzuschatzell. 'Ycrden Messungen del' Durchgangszeitcn a ls Funktion des 
Druckes bei mehr a ls zwei Temperatlu'en durchgeflihrt, lieferL das Verfahren aullerdem: 
1. die Drllckubleitung des thermisehen Ausdelwungskoeffizienten, 2. dic Temperatur
ubleitllng des thermischen AusdehuungskoeiIiziellten, 3. die Druckableitung del' spezifi
schen Warme, a il e als Funktion des Druckes. 

1. Introduction 

This paper presents an iterative procedure to estimate the values of the 
elastic constants of a crystalline solid at high pressures from the sound wave 
velocity meaSllrements under the assumption that the concomitant compressi
bility meaSllrcments are either unavailable or unreliable. This procedure resem
bles the procedure developed by Cook rl] with regard to the use of the principle 
of self-consistent integration but differs with regard to the estimation of 
,J(l, ?n, n, P , '1') (cf. equation (7)). The iterative procedure presented here 
requires no restrictive assumptions when the sonic or ultrasonic measurements 
are made as a function of pressure at more than two temperatures. If, however, 
thc.'e measurements are made as a function of pressure at two temperatures , 
then we assume that the temperature derivatives of the linear thermal expansion 
coefficients are independent of pressure and they may be represented by their 
respective values at some lower pressure where they are known. Lastly, if the 
ultrasonic measurements are made as a fllnction of pressure at only one tem-
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perature then an additional assumption must be made, i.e. the temperature 
derivatives of isothermal linear compressibilities are independent of pressure 
and they may be represented by their respective values at some lower pressure 
where they are known. For simplicity of presentation the analysis given in 
this paper refers to measurements of the transit-time of an elastic wave propa
gated in an anisotropic medium. No attempt is made to establish convergence 
of the procedure because it is generally difficult to do so for a numerical proce
dure unambiguousy since no explicit analytic expression can be obtained 
a priori. However, the iterative procedure presented in this paper predicts 
appropriate elastic constants whenever the data being analyzed are internally 
consistent; three examples discussed later confirm the utility of this procedure. 

2. Conventions and Notations 

For convenience, the elastic constants of a solid refer to the coordinate 
system (x, y , z) related to the crystal axes (a, b, c) as defined by the IRE Stand
ards Committee [2). The number of elastic constants (Oi ike) necessary to charac
terize the elastic property of a solid depends upon the crystal class to which 
the solid belongs. The subscripts of these constants were contracted to (Opq) by 
following the usual convention of writing the subscript i j, k t = 11,22, 33, 23, 
12,13 by p, q = 1,2,3, 4, 5, 6 so as to represent these Opq by a 6 X 6 matrix, 
denoted by COp q). The corresponding 6 X 6 matrix of the elastic compliances Sp q 
may be obtained from Opq by using the matrix relation between them, namely 

[Opq] X [Spq] = [1], (1) 

where [1] is a 6 X 6 unit matrix. The Op q-matrices for the different crystal 
classes may be found in [3]. 

P 
T 
e(P, T) 
X(l, m, n, P , T) 

P(l, m, n, P , T) 

x(P, T) 
P(P, T) 
L(l, m, n, J, P , T) 

Pressure 
Temperature 

Notations 

Density of a solid at pressure P and temperature T 
Linear compressibility of the solid in the direction whose 

direction cosines are given by l, m, and nat P and T 
Linear thermal expansion of the solid in the direction whose 

direction cosines are given by l , m, and n at P and T 
Volume compressibility of the solid at P and T 
Volume thermal expansion of the solid at P and T 
Width of the specimen used to measure the Jth velocity 

mode in the solid in the direction such that l, m, n deter
mine the direction cosines at P and T 

T(l, m, n, J , P , T) Transit time of the Jth wave velocity mode corresponding to 
L(l, m, n, J, P, T) 

V(l, m , n, J , P, T) The Jth velocity in the solid in the direction whose direction 
cosines are l, m, and nat P and T 

J.(l , m, n, J, P , T) L(l, m , n, J, PI> T) where PI < P and P equal to unity 
L(l, m, n, J, P, T) , indicates one atmosphere pressure 

Op(P, T) Specific heat of the solid at constant P and T. 
The superscripts T and S attached to a quantity indicate its isothermal and 
adiabatic values, respectively. 

, 
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3. Preliminaries 

The various relations used in the iterative procedure to be described originate 
either in the theory of elastic wave propagation in a solid or in thermodynamics 
theory. These general relations are presented with brief introductory remarks 
drawn from the two theories and appended only to clarify the material of this 
naper. 

3.1 RelaUons obtained from the theory of elastic wave pl'opagation 

The elastic constants of a solid are determined by measuring the velocities 
with which elastic waves are propagated along several directions in the solid. 
The number of velocity measurements needed to understand the elastic property 
of the solid depends on the crystallographic class to which it belongs. Christoffel's 
equations (e.g. equation (2)) which are applicable to any crystalline system 
give the relationship between measured velocities and elastic constants. In 
general, for a plane wave propagated in a crystal having direction cosines 1, m, n, 
the three possible wave velocities V may be found in terms of the elastic constant 
C1)Q from the roots of Christoffel's equations. 

All - e V2 A12 A 13 

A22 - e V2 
A 23 = 0 , (2) 

A 23 A33 - e V2 

where 

Aij = 12 Cli1j + m2 C2i2j + n2 C3 'i3j + 1 m (Cli2j + C2i1j ) + 
+ 1 n (CIi3j + C3i1j ) + 'In n (C2i3j + C3 i 2j ) . (3) 

It follows that e V2 is related to Ci i kt in a manner determined by the direction 
in which a wave is propagated. Three different velocities of propagation imply 
that the three displacement vectors associated with these velocities are mutually 
perpendicular and hence independent. Usually the three waves are mixed; 
one is predominantly longitudinal and the other two are predominantly shear. 
Pure waves may be propagated only in a few special crystallographic directions. 
The location of the pure mode directions in crystals of various symmetries have 
been investigated exhaustively by Borgnis [4] and Brugger [5] . 

3.2 7'hernwdynam:ic l'elations 

These relations serve two purposes: 
(i) To evaluate the pressure derivatives of the specific heat and the linear 

thermal expansions in the three principal directions of the solid at pressure P 
and temperature T ; and 

(ii) To convert the adiabatic quantities into their isothermal counterparts at 
pressure P and temperature T. 
The adiabatic and isothermal elastic compliances are related by 

Sfikt(P, T) - S'fjkt(P, T) = - (Jij(P, T) (Jlct(P, T) T[Cp(P, T) e(P, T)]-l. (4) 

When expressed in our notation the following relation between xS(l, m, n, P, T) 
and x'l'(l , 'In , n, P , T) results: 

XT(l , m, n , P , T) = xS(l, m, n, P, T) + L1(l, 'In, n , P, T) , (5) 
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where 
X(l , m, n, P , T) = (S11 + S12 + S13) l2 + (S12 + S22 + S23) m2 + 

+ (S13 + S23 + S33) n2 , (6) 

AlP T (J(P, T) T {(J p . 
LJ ( , m , n, , ) = e(P, T) Op(P, T) (1,0, 0, , T) l- + 

and 
+ (J(O, 1, 0, P , T) m2 + (J(O, 0, 1, P , T) n2} , (7) 

(J(P, T) = (J(I, 0, 0, P , T) + (J(O, 1, 0, P , T) + (J(O, 0, I , P , T) . (8) 

From the definition of isothermal linear compressibility, 'we have 

T(l P T)' = _ 1 ( SL(l, m, n, P , T» ) 
X , m , n" L(l,m, n, P, T) SP '1' 

I ( SA(l, m, n, P, T) ) (9) 
= A(l, m, n, P , T) SP T ' 

Since the suffix J has no significance in the above relation, it has been omitted 
from L(l, m, n, J , P, T) . By integrating equation (9) with respect to pressure, 
we obtain 

A(l, m, n, P , T) = A(l, m, n, PI> T) exp {( P - PI) XT(l , m, n, P, T)}, (10) 

by taking into account definition (9) which implies that XT(l , m, n, P , T) 
remains constant in the range of integration P to Pl' Again the temperature 
derivative of linear compressibility is related to the pressure derivative of the 
linear thermal expansion of a material by 

(
SXT(l , m, n, P , T» ) = _ ( S{J( l , m , n, P , T)) 

ST p SP T 
(11) 

and the pressure derivative of specific heat may be written as 

(
SO p(P, T» ) = _ T { (J2(P, T) + ( S(J(P, T» ) } . (12) 

SP T e(P, T) ST p 

Use of the above set of relations enables one to estimate the values of the elastic 
constants of a solid at high pressure without a priori knowledge of the compres
sibility of the substance. 

4. General Iterative Scheme 

In general the iterative scheme proposed here attempts to obtain self-con
sist ent estimates of A(l, m, n, P , T) in the three principal directions, i .e. 
A(I , 0, 0, P , T) , A(O, 1,0, P, T) , and A(O, 0, 1, P , T) at pressure P and t empera
ture T. The scheme presented below assumes the following: 

(i) The t emperature dependence ofthe linear expansion coefficients are known 
a t one atmosphere. 

(ii) The value of specific heat is known as a function of temperature at one 
atmosphere .. 
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(iii) An adequate number of velocity measurements are made to extract 
information about the elastic property of the solid as a function of pressure at 
more than two temperatures. 

At P = 1 and within the experimental range of temperature, all the quan
tities in the above set of 12 relations are lmown; no iteration is required to 
estimate the values of the elastic constants of a solid as a function of temper
ature at one atmosphere. 

~-\t the next higher pres 'ure all the quantities in the above set of relations 
are known except those involving A(l,?n, n , P, 1'). The iterative procedure 
developed here yields a self-consistent estimate of the elastic constants of 
a solid and also the pressure and temperature derivatives of the linear thermal 
ex pansion and of the specific heat of the solid at a pressure P and temperature T. 
To initiate the procedure, we set 

( 5x~' (l , ?n, n, P , 1')) = ( 5XT(l, ?n, n, PI> 1')) 
57' P 51' 1', 

(13) 

and 

( 
5(3(l, ?n, n , P, 1')) = ( 5(3(l, ?n, n , P l , 1')) 

51' 57" 
P P, 

(14) 

where P l is the preceding value of pressure. These enable us to compute 
(3(l , In , n , P, 1') and C piP, 1'). 

Next we set 
J.(l, 'In, n , P, 1') = A(l, 'In, n , P l , 1') , 

enabling us to compute (}(P, 1') from the relation 

(15) 

1 ( 5(}(P, T)) _ " ~'(P 1') _ "'1'(1 0 0 P 1') + T(O 1 0 D m) 
(p T) OP - X , - X "" X," L , .L + 

(! , '11 

+ XT(O , 0, 1, P, 1') . (16) 

Equation (16) is obtained by expressing 'X~'(P , 1') in terms of the three principal 
isothermal linear compressibilities through equation (6). L(l, 1n, n , P, 1') is 
computed with the help of both equation (15) and the definition ofA(l, 1n, n , P , 1') 
given in the section dealing with notation. These with the known values of 
T(l , In, n, J , P , T) enable us to estimate cftq(P, 1') from equations (2). The use 
of relations (1) , (4) , (11) , and (12) together with the assumptions (13) and (14) 
provide estimates of the values of SJ,'q(P, 1'). From these estimates of SJ,'q(P, 1') 
wc obtain XT(l , 'In , n, P , 1') , which by relation (10) yields a new estimate of 
},(l , 1n, n , P , 1'). If the new values of },(l, 'In , n, P, 1') in the three principal 
directions agree with their respective values assumed at the beginning of the 
iteration, the estimated values of the elastic constants are correct and consistent 
with the assumptions represented by relations (13) and (14). If these values 
of },(l , 1n, n , P , 1') do not agree with the previously assumed values iteration is 
repeated with these new values of },(l , 1n, n , P , T) as starting values and all 
the related quantities are recalculated. This process repeats until two conse
cutive estimates of A(l, 'In, n, P , 1') in the three respective principal directions 
are equal in magnitude at the pressure P and a temperature T. The complete 
procedure is carried out at the pressure P and at all the temperatures at which 
the travel-time measurements were made. When all the elastic constants of 



Table 1 
A flow chart of the iterative scheme to estimate the values of the elastic constants of a solid 

as a function of pressure and temperature. 
A(l, m, n, P, T) = [8xT(I, m, n, P, T)/8T]p and B(l, m, n, P, T) = [8{3(1, m, n, P, T)/8T]p 

Increase pressure (P) ---------~ 
~ 

Temperature (T) -----~-----:--I 
~ next temperature 

In the three principal directions 

Set A(l, m, n, P, T) = A'(l, m, n, P, Ti Set A(l, m, n, P, T) = A(l, m, n, PI' T) 
- and B(l, m, n, P, T) = B(l, m, n, PI' T) 

Set B(l, m, n, P, T) = ~ 

= B'(l, m, n, P, T) {3(I, m, n, P, T) t 

{3(P, T) 

~ 
In the three principal directions 

.,---,---.,----,---------,,,-----,=-- Set ),(1, m, n, P, T) = )'(l, m, n, PI' T) 
Set ),(1, m, n, P, T) ~ 

= ).'(1, m, n, P, T) e(P, T) I 
Cp(P,T) 

~ 
Jth velocity mode at P and T - ----:----:-------:---, 

~ next velocity mode 

I 

L(l, m, n, J, P, T) 
V(l, m, n, J, P, T) 

t ____ _ _ 
t -

When all velocity modes are 
calculated at P and T 

~ . 

CSpq(P, T) 
SS pq(P, T) 

XS(I, m, n, P, T) 
LJ(I, m, n, P, T) 

xT(I,m, n, P, T) 
J.'(I,m,n,P,T) 

If J.'(l, m, n, P, T) :j:: J.(l, m, n, P, T)t 
t 

If J.(l, m, n, P, T) = ).'(1, m, n, P, T) in 
each of the three principal directions 

~--------------I 
~ 

When all "T(l, m, n, P, T) and 
L(l, m, n, P, T) are calculated at P 

~ 

A'(l, m, n, P, T) 
B'(l, m, n, P, T) 

If B'(l, m, n, P, T) :j:: B(l, m, n, P, T) 1 
or if A'(l, m, n, P, T) :j:: A(l, m, n, ~ T) 1 ---1 

If A(l, m, n, P, T) = A'(l, m, n, P, T) 
and B(l, m, n, P, T) = B'(l, m, n, P, T) 
in each of the three principal directions 

r------------- -; 
I End I 
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Table 2 
Pressure derivatives of the adiabatic 
elastic constants of lead at 296 and 
195 OK as obtained by Miller and 
Schuele (M & S) and by the iterative 

procedure (IP) 

296 oK 195 oK 

M&S I IP M&S I IP 

011 5.94 6.02 5.82 5.90 
0 12 5.33 5.40 5.26 5.34 
044 2.06 2.10 1.97 2.01 
Bs 5.53 5.61 5.45 5.50 

a solid are estimated in the above manner at the pressure P as a function 
of temperature, we obtain new estimates of [8XT(l,?n , n, P, T)j8T]p and 
[8/1(l, ?n, n, P , 'l') j8T]p. If these new values of [8X7'(l,?n, n, P, T)/8T]p and 
[8/1(l, ?n, n, P, 'l') j8T]p in the three principal directions agree with their respective 
assigned values at the beginning of the calculation the estimated values of the 
elastic constants at the pressure P and all the temperatures are considered cor
rect. If these new values of [8XT(l,?n, n, P , T) j8T]p andjor [8/1(l, ?n, n, P, T) j8T]p 
do not agree with their previously assigned values the iterative procedure is 
repeated all over again with these new values as the starting point, until two 
consecutive estimates of [8XT(l,?n, n, P, T)j8T]p and [8/1(l,?n, n, P, T)j8T]p agree 
with their respective values in all the three principal directions. (See the flow 
chart in Table 1). 

The net outcome includes 
(i) the values of the elastic constants as a function of pressure and temperature, 
(ii) the values of the partial temperature and pressure derivatives of the 

linear thermal expansion coefficient as a function of pressure and temperature, 
and 

(iii) the pressure derivative of the specific heat as a function of temperature. 
If, however, the transit time of the elaf:!tic waves in a solid is measured as 

a function of pressure at only two temperatures, then the values of the elastic 
constantf:! of the solid may be estimated at high pressure by interpreting PI in 
relation (14) to signify some lower pressure at which these quantities are known, 
and by omitting the iterations on [8/1(l, ?n, n, P, T)j8T]p in the above scheme. 
Lastly, if transit times of the elastic waves in a solid are measured as a function 
of pressure at only one temperature , then the values of the elastic constants 
may be estimated at high pressures by interpreting PI in both relations (13) and 
(14) to signify some lower pressures at which these quantities are known, and 
by omitting the iteration on [8X7'(l,?n , n, P , T)j8T]p and [8/1(l , ?n, n, P, T) jflT]p 
in the above scheme. 

We have applied the iterative procedure described above to estimate the 
values of the elastic constants from the ultrasonic data for lead (a cubic solid) 
at 296 and 195 OK to 3 kbar [6], for rutile (a tetragonal solid) at 298 OK to 
7.5 kbar [7],. and for calcite (a trigonal solid) at 298 OK to 6 kbar [8]. Table 2 
compares the values of the pressure derivatives of adiabatic elastic constants 
of lead at 296 and 195 OK as calculated by Miller and Schuele and by the itera-



Table 3 

lts (in un.its of 1011 dynJcm2 ) of calcite with pressure at 298 oK as obtained by Dandekai 
by the iterative procedure (IP) from the same ultrasonic data 

033 044 0 66 014 

IP D I IP D I IP D I IP D I Il 

±0.05 ±0.O2 ±0.07 ±0.06 
14.626 8.531 8.531 3.405 3.405 4.328 4.328 -2.076 - 2.( 
14.651 8.526 8.527 :lA53 3.453 4.335 4.336 -2.078 - 2.( 
14.676 8.522 8.522 3.468 3.468 4.342 4.343 -2.101 -2.1 
14.700 8.518 8.516 3.449 3.448 4.349 4.350 -2.137 -2.1 

thermodynamic parameters used in the LP: Thermal expansion coefficients from [10], 
lt one atmosphere from [11], specific heat value from [12] . 

Table 4 

.ts (in kbar) of single crystal rutile with pressure at 298 OK obtained by Manghanani (M) [7] 
cedure (IP) from Manghanani's data 

033 Ou 0 66 0 12 
----

IP M I IP M I IP M I IP M I 11 

2714.3 4839.5 4839.5 1244.3 1244.3 1947.7 1947.7 1779.6 177\ 
2722.4 4849.9 4850.8 1245.7 1245.2 1955.7 1955.7 1791.0 179: 
2730.4 4860.3 4862.1 1247.1 1246.3 1963.8 1963.7 1802.3 180; 
2746.6 4881.2 4884.7 1249.8 1248.4 1979.9 1979.7 1825.1 182~ 

2762.8 4902.0 4907.3 1252.6 1250.5 1996.0 1995.9 1847.8 184. 

thermodynamic parameters: Same as those used by Manghanani [7], i.e. thermal expansi 
[14], and temperature derivatives of tbe compressibilities at 1 atm [7]. 
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tive procedure. The required thermodynamic data used in the calculations here 
are those quoted in Table 1 of the paper by Miller and Schuele [6]. The differen
ces in the values of the pressure derivatives are small but real. These differences 
can become significant at high pressures. In the course of calculation it was 
also found that the temperature derivatives of the volume compressibility of 
lead did not change significantly with pressure to 3 kbar. For example, the 
values at 1 bar and 3 khar are 0.00013 X 10-11 and 0.00012 X 10-11 cm2Jdyn deg. 
The pressure derivatives of the specific heat at both 296 and 195 oK are simi
larly negligible. 

Tables 3 and 4 present the adiabatic elastic constants of calcite and rutile 
as a function of pressure at 298 oK. These tables indicate that the two sets of 
estimates for these constants are in good agreement. Hence, they suggest that 
the ultrasonic travel-time data as a function of pressure at 298 oK, thermal 
expansion coefficients data, and the ultrasonic data as a function of temper
ature at one atmosphere and the specific heat value at 298 oK on the one hand, 
and Bridgman's compressibility measurements on calcite and rutile on the 
other, are consistent. The values of a and b appear in Bridgman's equation 

v ; Vo = _ a P + b p2 . 
o 

(17) 

We present the values of a and b for calcite as obtained from the iterati,e 
procedure and those determined by Bridgman [9] in Table 5. The differences 
in the estimates of bare evidellt. Since at low pressures their effects are negligible, 
the two sets of elastic constants values in Table 3 agree remarkably with each 
other. A similar statement may be made for rutile. 

These calculations demonstrate that the iterative procedure presented in this 
paper accurately estimates the values of the elastic constants of a solid at high 
pressure from the ultrasonic measurements when the concomitant compressibility 
measurements are either unavailable or unreliable. Moreover, the procedure 
provides an indirect method by which to compute the values of specific heats 
and linear thermal expansion coefficients as a function of pressure and temper
ature provided the ultrasonic measurements are made as a function of pressure 
at more than two temperatures. The accuracy of these estimates is limited 
only by the precision of the sound measurements as a function of pressure and 
temperature and of linear thermal expansion coefficients and specific heat mcas
urements as a function of temperature at one atmosphere. If and when it becomes 

Table 5 
The coefficients a a.nd b in Bridgman's equation of state 
(17) (units of a a.re 10-12 cm2jdyn and units of bare 

10- 24 cm2jdyn) for calcite at 298 oK 

Compressi. Present work Bridgman 

bility a I b a I b 

100 0.277 0.60 0.273 0.24 
001 0.847 3.6 0.822 2.9 
Volume 1.401 5.98 1.367 3.9 
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possible to measure the values of linear thermal expansion coefficients and 
specific heats of a solid at high pressure with precision, the present procedure 
would continue to provide us with a check for the consistency of these measure
ments with the other relevant data on the solid. 
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